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ABSTRACT 

This paper presents preliminary results regarding which features 

of pen-based gesture input are sensitive to cognitive stress when 

manipulated via changes in task difficulty. We conducted a 

laboratory study in which participants performed a vigilance-

oriented continuous attention and visual search task. Responses to 

the search stimuli were entered via pen gestures (e.g., drawing a 

letter corresponding to the stimulus). Task difficulty was 

increased during predefined intervals. Participants’ input 

behaviors were logged, allowing for analysis of gesture input 

patterns for features sensitive to changes in task difficulty. We 

also collected physiological sensor readings (e.g., skin 

temperature, pulse rate, and respiration rate). Input behavior 

features such as gesture size and pen pressure were not affected by 

task difficulty, but gesture duration and length were affected. Task 

difficulty also affected physiological sensors, notably pulse rate. 

Results indicate that both gesture dynamics and physiological 

sensors can be used to detect changes in difficulty-induced stress. 

Categories and Subject Descriptors 

H.5.m [Information Systems]: Information Interfaces and 

Presentation (e.g., HCI) – miscellaneous. 

General Terms 

Experimentation, Human Factors. 

Keywords 

Gesture dynamics, cognitive stress, user study, pen-based input, 

physiological sensors, affective computing, vigilance, attention, 

human-computer interaction. 

1. INTRODUCTION 
Understanding an individual’s cognitive state is a key pursuit of 

affective computing. Related work has used a variety of signals to 

detect the user’s cognitive state, including physiological measures 

such as electrodermal activity (EDA) / galvanic skin response 

(GSR), heart rate, eye movements, pupil dilation, or a 

combination of these sensors [3, 10]; behavioral measures such as 

posture [5], keystroke dynamics [11], acoustic features of speech 

[12], and mouse or touchpad motion or pressure [4, 9]; and self-

report data such as cognitive load questionnaires [2]. Related 

work has also attempted to detect a variety of cognitive states, 

including cognitive load [6] and negative affect or emotion [4]. 

We add to the existing body of work by presenting preliminary 

results from an empirical study that focuses on behavioral 

measures from pen-based gesture input and their sensitivity to 

cognitive stress manipulated via task difficulty. Pen input features 

have previously been examined as indicators of cognitive load 

caused by task complexity [6] and task memory demands [7] for 

simple shapes (circles and crosses). Our study augments prior 

work by (a) exploring another method to induce cognitive load 

(i.e., task speed), (b) probing additional pen input features (i.e., 

pressure and bounding box size), and (c) using a wider variety of 

pen input shapes (i.e., letters). 

We conducted a laboratory study in which participants performed 

a vigilance-oriented continuous attention and visual search task, 

which we call the “target-finding task” (Figure 1). Participants 

performed the task using one of five input modalities: gesture, 

speech, typing, mouse click, and finger tap. This paper considers 

only the gesture modality data, focusing on identifying pen input 

features that are sensitive to changes in task difficulty. We call 

these features “gesture dynamics” after the analogous “keystroke 

dynamics” in prior related work [11]. We also collected 

physiological sensor readings (e.g., skin temperature, pulse rate, 

and respiration rate). In this paper, we provide preliminary results 

on the sensitivity of task performance, gesture dynamics, and 

physiological data to difficulty-induced stress, discuss 

implications, and describe future work motivated by these results. 

 

Figure 1. Snapshot of target-finding task, non-stress period. 

2. EXPERIMENT DESIGN 
The study is a two-factor mixed design in which modality is a 

between-subjects factor and “stress” (caused by task difficulty) is 

a within-subjects factor. The analyses in this paper focus 
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exclusively on the gesture modality data. We developed a fixed-

attention target-finding task modeled after single-stream vigilance 

tasks from the literature [1]. These vigilance tasks tend to involve 

one stream of input in which only one target or distracter is visible 

(or audible) at any given time, and responses involve a simple key 

or button press. In order to increase the richness of the features we 

could extract from each response, we increased the complexity of 

the task by adding an element of visual search. Objects (arrows 

facing the four cardinal directions) faded in and out gradually 

onscreen. Users were instructed to select downward-facing arrows 

(targets), and ignore all other arrows (distracters). Objects could 

appear anywhere on the blank field, for a random duration of 

between two and four seconds, with a random interval of between 

one and three seconds between objects. As a result, multiple 

objects (including targets) could be onscreen at once. Every 

participant experienced the exact same sequence of objects.  

Task difficulty was manipulated by the regular occurrence of 

“stress periods,” defined as follows. First, the interval between 

subsequent objects was decreased by 80%, causing many more 

objects to be onscreen at once. Second, the interval between 

targets was decreased from approximately 45 seconds during non-

stress periods (with other distracter objects appearing in between 

these intervals) to approximately 4.5 seconds during stress 

periods. The range of possible durations that objects were 

onscreen remained unchanged for both the stress and non-stress 

periods. In each 10-minute task, three 1-minute stress periods 

occurred at regular intervals. A snapshot in time from a non-stress 

and stress period is shown in Figures 1 and 2, respectively. 

 

Figure 2. Snapshot of target-finding task, stress period. 

All objects were accompanied by a short one-word identifier (ID) 

displayed just below the object. This ID was chosen from a set of 

IDs selected from the NATO phonetic alphabet. Here are the 12 

IDs used: {"alpha", "bravo", "delta", "echo", "golf", "hotel", 

"india", "lima", "mike", "oscar", "romeo", "zulu"}. The IDs for all 

objects onscreen at any one point in time were unique, but object 

IDs were repeated during the session and were used for both 

targets and distracters. In the gesture modality, users drew the first 

letter of the ID in a space at the bottom right of the screen.  

3. DATA ANALYSIS AND RESULTS 
Twelve participants (7 male) completed the task using the gesture 

modality. All were members of the university community who 

answered advertisements via email, flyers, or website 

announcements for the study. Two participants (both female) were 

excluded from data analysis because of low recognition accuracy 

for their gestures because recognition errors could cause 

additional stress and, for this preliminary investigation, we wanted 

to isolate the stress caused by task difficulty. The remaining 10 

participants had an average age of 23.5 years (min=20, max=29, 

σ=3.3). All were right-handed and had a minimum of 7 years of 

computer experience. Most (8) indicated they used pen and stylus 

input on computers “sometimes,” while the others indicated they 

had tried it only once or twice. Most (9) had played games similar 

to the target-finding task before, and four of those people 

indicated they played such games “often.” 

3.1 Task Performance 
We analyzed task performance to understand the overall pattern of 

responses and whether any task performance measures were 

sensitive to task difficulty. See Table 1 for descriptive statistics. In 

all tables, shaded dependent variables (also marked with an *) 

show significant contrasts at the p<0.05 level. In all cases, means 

were computed across all data points across all participants, 

unless otherwise specified. 

Table 1. Descriptive statistics for task performance measures. 

Dependent 

Variable 

Stress / 

Normal 
Mean 

Standard 

Deviation (σ) 
N 

Response 

Latency (ms) 

Normal 1352.9 361.7 72 

Stress 1418.6 360.4 312 

Response 

Latency 

Proportion 

Normal 0.47 0.11 72 

Stress 0.47 0.11 312 

* Response 

Duration (ms) 

Normal 652.6 193.4 72 

Stress 552.7 192.8 312 

3.1.1 Targets and Distracters Hit 
Overall, there were 47 targets and 609 distracters. On average, 

participants found 38.4 targets (min=32, max=46, σ=4.67), missed 

8.6 targets (min=1, max=15, σ=4.67), and hit 3.6 distracters 

(min=1, max=8, σ=2.27). Although some hit distracters were 

caused by misrecognitions, many (42%) were intentional hits 

caused by visual search challenges of the task. A total of 486 

gestures were recorded (mean=48.6, min=42, max=58, σ=5.85). 

3.1.2 Response Latency and Duration 
We compared whether stress had an effect on the absolute latency 

for correct responses (e.g., the time between the onset of the target 

and the onset of the response), but found no significant difference 

between stress and normal periods (F1,382=1.94, n.s.). (All tests are 

one-way ANOVAs on the within-subjects factor of stress unless 

otherwise stated.) There was also no significant difference in 

response latency as a proportion of the object’s duration on screen 

(F1,382=0.01, n.s.). For response latency, there was an interesting 

trend suggesting that users may begin their response more quickly 

during non-stress periods, but validating this trend would require 

additional data. We also analyzed whether there was an effect of 

stress on the duration of a response (e.g., the time between the 

onset and completion of the response) also, and found that the 

duration was significantly shorter during stress periods 

(F1,382=15.70, p<0.0001).  

These results imply that users may be more relaxed during non-

stress periods, entering gestures more slowly (e.g., with longer 

durations), but beginning their responses more quickly after they 

appeared (e.g., with shorter latencies). To explain: during normal 

periods, fewer objects were onscreen, allowing users to focus on 

each object more quickly, decreasing the latency for responses. 

When many objects were onscreen, users took longer to identify 



which objects were targets, increasing the latency for responses. 

Then, since users knew another target may appear soon in stress 

periods, they entered their responses more quickly.  

3.2 Gesture Dynamics 
We analyzed several features of the gestures input by participants 

to identify those that were sensitive to changes in task difficulty. 

Table 2 includes descriptive statistics for this section. 

Table 2. Descriptive statistics for gesture dynamics measures. 

Dependent 

Variable 

Stress / 

Normal 
Mean 

Standard 

Deviation (σ) 
N 

* Gesture 

Duration 

Normal 624.5 236.1 95 

Stress 535.0 216.8 391 

Gesture 

Speed 

Normal 3.46 1.18 95 

Stress 3.72 1.21 391 

* Number of 

Points 

Normal 65.1 22.5 95 

Stress 53.2 20.9 391 

* Gesture 

Length 

Normal 224.8 97.8 95 

Stress 199.0 98.3 391 

Gesture 

Height 

Normal 79.3 35.8 95 

Stress 80.5 34.7 391 

Gesture 

Width 

Normal 56.0 29.9 95 

Stress 52.4 31.7 391 

Gesture Area 
Normal 4632.5 3474.8 95 

Stress 4409.5 3646.0 391 

Gesture 

Average 

Pressure 

Normal 25965.3 4378.3 74 

Stress 26301.3 4059.2 300 

Gesture 

Pressure Per 

Point 

Normal 20769.1 11908.3 6639 

Stress 20849.0 12337.9 20358 

3.2.1 Gesture Duration and Speed 
Not surprisingly, we found a significant difference in the gesture 

duration (computed by time from the first gesture point to the last 

gesture point) between stress and normal periods (F1,484=12.58, 

p<0.0001). We also found a marginally significant difference in 

gesture speed (computed by dividing the length of a gesture by the 

number of points collected within the gesture) between stress and 

normal periods (F1,484=3.74, p<0.055). In addition, the number of 

points collected per gesture is related to speed because the faster 

the user writes, the fewer points will be collected due to sampling 

rate. We found that number of points per gesture was significantly 

fewer in stress periods (F1,484=24.34, p<0.0001). All of these 

results indicate that users drew gestures faster during stress. 

3.2.2 Gesture Length and Size 
We analyzed whether there was an effect of stress on the length of 

a gesture (e.g., the path length from the first point of the gesture to 

the last point), finding that the length was significantly shorter 

during stress periods (F1,484=5.30, p<0.05). We further compared 

whether there was an effect of stress on the size of a gesture as 

determined by its bounding box (e.g., the height and width of the 

smallest box that entirely contains the gesture) but found no 

significant differences for height (F1,484=0.09, n.s.), width 

(F1,484=1.06, n.s.), or area (F1,484=0.29, n.s.).  

These results taken together with those for gesture duration and 

speed indicate that the users did not draw smaller or larger 

gestures during stress periods, but they did draw them faster. 

During the stress periods, more objects were onscreen at once and 

so users may have felt rushed to enter responses more quickly so 

they could prepare for the next target. Users felt this pressure even 

though the duration of the objects was the same in both periods. 

3.2.3 Gesture Pressure 
We also compared whether there was an effect of stress on the pen 

pressure exerted by the user during the gesture. We collected pen 

pressure using the real-time stylus methods from the Windows 

Tablet PC SDK. For this analysis, we excluded two participants 

for whom the pressure sensing capability malfunctioned, yielding 

a constant pressure. For the remainder of data, a simple main-

effects ANOVA did not find a significant difference between 

stress and normal for the average pressure during a gesture 

(F1,372=0.39, n.s.) or for per-point pressure (F1,26995=0.21, n.s.).  

However, we hypothesized that gesture pressure might be user-

dependent. For average gesture pressure, including the user 

identifier as a factor does not show a significant effect for stress 

level (F1,7.2=2.6, n.s.). For per-point pressure, both the user and 

the gesture to which the point belongs might be important. It is 

expected that the pressure of points within a gesture will be more 

related than the pressure of points between gestures. An ANOVA 

of per-point pressure considering stress, user ID, and a unique 

gesture identifier as factors indicated a trend for increased 

pressure during stress (F1,92=4.0, p<0.08), but additional data 

would be required to validate this observation. These results 

indicate that, in general, gesture pressure does not tend to change 

with the introduction of difficulty-induced cognitive stress, 

suggesting that we must focus on real-time computation of gesture 

features such as length and duration for unobtrusive measures. 

3.3 Physiological Sensors 
We collected physiological sensor readings using a BioPac 

MP150 data acquisition system. The sensors used included skin 

temperature (SKT100C), pulse (PPG100C with TSD200), and 

respiration rate (RSP100C with TSD201). Sensors automatically 

recorded the participants’ readings every 4.8 milliseconds (ms). 

To make data analysis more tractable, we averaged every 10 

sensor readings, yielding a data granularity of 48 ms.  

The skin temperature sensor was mounted on the participant’s 

forehead roughly between the eyebrows, a location previously 

determined to show temperature changes correlated to cognitive 

load [8]. Each participant wore two respiration sensors, one just 

under the chest and one around the waist, as recommended by 

BioPac, since different people tend to breathe more strongly from 

one area or the other. The pulse sensor was fixed to the 

participant’s index finger on the non-dominant hand.  

Biopac’s AcqKnowledge software was used to collect the sensor 

readings and calculate on-the-fly rates for the cyclical sensor data: 

pulse rate and respiration rate (abdomen and chest). See Table 3 

for descriptive statistics. For these data, means were first 

computed for each participant, and then grand means and standard 

deviations were estimated across all participants. Preliminary 

analysis comparing rates during normal periods and stress periods 

(repeated measures, within subjects, estimated grand means) 

yielded the following results: 

 Pulse Rate: F1,9=8.04, p<0.05 

 Skin Temperature: F1,9=3.08, p<0.115 

 Respiration Rate (Chest): F1,9=0.24, n.s. 

 Respiration Rate (Abdomen): F1,9=0.01, n.s. 



Table 3. Descriptive statistics for physiological sensors. 

Sensor Reading 
Stress / 

Normal 
Mean 

Standard 

Deviation (σ) 
N 

* Pulse Rate 

(BPM) 

Normal 80.85 10.36 10 

Stress 85.00 10.75 10 

Skin 

Temperature 

(°F) 

Normal 92.86 1.24 10 

Stress 92.88 1.26 10 

Respiration Rate 

(Chest) (BPM) 

Normal 14.46 1.35 10 

Stress 14.72 1.43 10 

Respiration Rate 

(Abdomen) 

(BPM) 

Normal 15.24 0.58 10 

Stress 15.20 1.42 10 

Pulse rate was the most reliable indicator of stress in our data, 

followed by a marginal trend for skin temperature. Respiration 

rates did not show significance overall. However, during the 

study, experiment staff observed anecdotally that participants 

often sighed visibly at the onset of stress periods or when a target 

was just missed. We intend to analyze these data in more detail at 

timestamps near events of interest (e.g., targets appearing, stress 

periods onset, etc.), to determine if these anecdotal observations 

are supported by the quantitative data. 

3.4 Other Data Collected 
We also used pressure and distance sensors mounted to a chair in 

such a way that we could measure posture changes. After the 

session, participants filled out a self-report questionnaire 

regarding their experiences during the study. Due to space 

limitations and the preliminary nature of the current analysis, 

results for these data are not included here. 

3.5 Gesture Recognition Accuracy 
Participants performed the target-finding task on a Windows 

Tablet PC; recognition was done using Microsoft’s Tablet PC 

SDK. We were concerned about recognition errors as an 

additional source of stress, so results for two participants with 

very low recognition accuracy were excluded from the analysis. 

(Recognition accuracy for them was less than two standard 

deviations below the mean.) Recognition accuracy was coded by 

hand during post-hoc data analysis by the first author based on an 

inspection of the gesture input. Accuracy was approximately 88% 

across all responses (min=81%, max=95%, σ=5.6%). Recognition 

accuracy could be improved to ensure minimal impact on task 

performance and physiological sensor readings. 

4. CONCLUSIONS AND FUTURE WORK 
The results presented in this paper represent preliminary 

investigations into effects of cognitive stress, induced by increases 

in task difficulty, on a wide range of gesture dynamics and 

physiological sensor readings. Participants performed a vigilance-

oriented continuous attention and visual search task in which 

difficulty increased at certain intervals. Input behavior features 

such as gesture size and pressure were not significantly affected 

by difficulty-induced stress, but gesture duration (e.g., speed) and 

length were. Task difficulty also affected physiological sensors, 

notably pulse rate. Results indicate that both gesture dynamics 

and physiological sensors can be used to detect changes in 

difficulty-induced stress. We plan to continue this work with more 

detailed analyses focusing on the correlation of the various sensor 

channels with task performance, and cross-modality comparisons 

to determine which modalities are more or less sensitive to 

changes in stress. Recognition accuracy was a small but important 

factor, so we intend to explore the effects of per-user recognition 

accuracy on reactions to stress and task difficulty. We also have 

other data (self-report questionnaires and posture data) to analyze. 

Data collected during this study can be made available to 

interested researchers; please contact the first author. 
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