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Abstract 

In next-generation classrooms and educational 

environments, interactive technologies such as 

surface computing, natural gesture interfaces, and 

mobile devices will enable new means of motivating 

and engaging students in active learning. Our 

foundational studies provide a corpus of over 10,000 

touch interactions and nearly 7,000 gestures 

collected from nearly 70 adults and children ages 7 

years old and up, that can help us understand the 

characteristics of children’s interactions in these 

modalities and how they differ from adults. Based on 

these data, we identify key design and 

implementation challenges of supporting children’s 

touch and gesture interactions, and we suggest ways 

to address them. For example, we find children have 

more trouble successfully acquiring onscreen targets 

and having their gestures recognized than do adults, 

especially the youngest age group (7 to 10 years 

old). The contributions of this work provide a 

foundation that enables touch-based interactive 

educational apps that increase student success.  

Keywords: Touch interaction, gesture interaction, 

child-computer interaction, mobile devices, gesture 

recognition, $N, $P, educational technology. 

Introduction  

Over the past decade, interactive technologies such 

as surface computing, natural gesture interfaces, and 

mobile devices have made the transition from niche 

markets to mainstream products that are available to 

the end-user. With this transition comes new 

opportunities for the design of interactive 

experiences that provide seamless, natural 

interactions using modalities users can apply across 

contexts. This set of new technologies will enable 

new means of motivating and engaging students of 

all ages in active learning experiences. As students 

are able to use natural interaction modalities such as 

touch, gesture, voice, and motion in new applications 

that support them, they will no longer need to 

consciously adapt their interactions to each new 

digital device or tool. Rather, they will be able to use 

existing tools and abilities they have learned in other 

apps, allowing them to focus on the learning tasks or 

goals at hand. 

We present our work on the fundamental building 

blocks of this next generation of education 

technology, specifically dealing with touch and 

gesture interactions enabled by surface computing 

devices such as smartphones. We believe that this set 

of modalities will be common in the near-term next 

wave of educational applications, because of the 

growing adoption of mobile touchscreen devices 

such as smartphones and tablets. These devices 

enable personalized learning [11], since the cost for 

each student to have his or her own device is no 

longer prohibitive [32]. The mobile form factor also 

enables situated learning [29], facilitating use of the 

devices anywhere, from the classroom, to the science 

laboratory, to field trips, and in the home [10,42]. 

Educational technology serves children of all ages. 

However, younger children, in elementary through 

middle school (about ages 7 to 13), present a special 

challenge for the use of mobile touchscreen devices 

for their educational activities. Typically, these 

devices and their underlying interactions are not 

designed specifically for children. Rather, the 

devices are developed for the “typical” adult user, as 

mass-market, consumer-oriented products. The 

current design of the most widespread devices has 

not taken into account the specific needs of young 

users. Furthermore, literature on developmental 

psychology [22,34,44] reveals that children are 

inherently different and not just “smaller adults.” 

Their motor skills are still developing, often at a 

rapid pace [22]. Their performance and sensory 

processing speeds are markedly different than that of 

adults [44]. Specifically, children have smaller 

fingers, weaker arms, less fine motor control, and 

(typically) less experience with technology than 

adults. These factors may contribute to key 

differences in how children can, expect to, and do 

use touch and gesture interaction and will impact 

their success with mobile devices. So far, this impact 

has not been examined thoroughly. 
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To investigate these differences, we present two 

foundational studies, conducted on touchscreen 

smartphones, with nearly 70 adults and children ages 

7 years old and up. We describe a corpus of over 

10,000 touch interactions and nearly 7,000 gestures 

that can help us understand the characteristics of 

children’s interactions in these modalities and how 

they differ from adults. Based on these data, we 

identify key design and implementation challenges 

of supporting children’s touch and gesture 

interactions, and suggest ways to address them. For 

example, we find that children miss onscreen touch 

targets far more often than adults, especially for 

smaller targets, and children exhibit distinctive 

behaviors such as unintentional touches in the 

location of the previous target, a phenomenon we 

term holdovers. We also find that children’s gestures 

are less accurately recognized than adults’ gestures 

by current gesture recognition approaches. Our 

results indicate that these challenges are experienced 

most heavily by the youngest age group in our 

studies, children ages 7 to 10 years old. These 

findings build on our prior work in this space [2,8], 

increasing the robustness of these conclusions across 

a wider range of users. 

The contributions of this work will assist designers 

and developers who are creating interactive 

educational apps for surface computing platforms, 

especially small-screen devices such as smartphones, 

but also extending to larger devices such as tablets. 

This work can help apps increase student success by 

allowing users to focus on learning goals instead of 

on making themselves understood by the device or 

app. In our vision of the future of educational apps, 

rather than the user adapting to the device, the device 

will adapt to the user and to the context, improving 

learning.  

Related Work 

Touch and Surface Gesture 
Interactions 

Previous research has examined the usability of 

interaction on touch- and surface-gesture-based 

platforms, for both finger and pen, including Tablet 

PCs and tablet computers [46,47], tabletop and 

surface displays [6,16,38,40], and mobile devices 

[4,18,20,30,33]. Most of this work has focused on 

adult users without explicit consideration of younger 

users. In cases where children have been included, 

findings have been general conclusions rather than 

direct comparisons between adults and children [40]. 

Likewise, other research has included children only 

[16,38], further hampering the comparison of 

children and adults. 

As the use of touch-based platforms by young users 

[43] has increased, so has the need for further work 

on direct comparisons of children and adults as users 

to understand how best to accommodate children. 

Prior work on stylus-based interaction on Tablet PCs 

has examined handwriting input for children to 

compare their performance with adults’ performance 

[36]. Recent work has begun to explicitly explore 

differences between children and adults on 

touchscreen devices [2,8,19], but more work is 

needed. The Sesame Workshop has developed a set 

of “best practice” interaction design 

recommendations for touchscreen apps for pre-

school children (ages 4 and under) based on more 

than 50 touchscreen studies with this age group [41], 

but they do not compare these recommendations 

with those for older children or adults. We extend 

this work to school-age children, and we prioritize 

cross-generational comparisons throughout our 

studies. 

Pointing Interactions 

Pointing interactions on the desktop have been well-

studied, including pointing for children. Prior studies 

have explored how well Fitts’ law [14] applies to 

children by comparing adults and children acquiring 

targets using mice or other pointing devices 

[12,21,25]. Other work has found that, as children 

grow older, their movements to complete aiming 

tasks such as pointing become more stable, and that, 

as children repeat these tasks, their behavior begins 

to remain consistent by age twelve [39].  

A few studies have investigated pointing on 

touchscreens specifically, exploring the relationship 

between factors such as target size, target location, 

and finger size to understand the effects of “fat 

fingers” and occlusion while using small screens 

[20,35]. New interaction paradigms have been 

proposed to improve touchscreen interaction in 

unstable environments, such as applications of goal 

crossing [1] to touchscreens [27]. However, again 

such evaluations of pointing-based interactions on 

touchscreens have been conducted only on adults, 

hindering the comparison between adults and 

children.  

Results from a few studies that have compared 

children and adults have revealed that children 

experience difficulty with drag-and-drop interactions 

on both desktops and mobile devices [23,24]. For 

example, children have difficulty maintaining 

contact with the touchscreen as required to complete 

dragging gestures [9]. These findings begin to point 

to design recommendations for touchscreen 

interaction for children, but more work is needed. 
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Cognitive and Physical Factors  

Latency, defined as the time between a user’s action 

and a system’s response, has been studied in mobile 

devices with respect to touch and haptic feedback 

[26]. Adults’ latency perception has been found to be 

between 25 to 40 milliseconds (ms) for visual-

auditory asynchrony and haptic-auditory asynchrony 

[26]. Other research has revealed a latency effect of 

more than 80 ms from when a finger touches a 

touchscreen, the time required for the vibration 

motor to start, and the expected application response 

[17]. These latencies can cause unexpected 

interactions and poor performance, if the device does 

not respond as expected. Since more children are 

now using mobile devices, we must continue to 

explore the effects of touch latency on adult and 

child users.  

In addition to latency perception, manual dexterity is 

another factor that can contribute to a user’s ability 

to successfully acquire touch targets or use surface 

gesture interactions. Previous research has revealed 

that people’s gross motor skills (e.g., large body 

movements) and fine motor skills (e.g., small body 

movements) refine as they progress from infancy to 

adulthood [22,39,44]. This knowledge has been used 

by educational psychologists in the development of 

instruments that are used to assess an individual’s 

ability to draw shapes. For example, it is 

developmentally appropriate for a child aged twelve 

years to draw a three-dimensional cube, though only 

appropriate for a child aged four years to draw a one-

dimensional square [5]. Furthermore, the impacts of 

these stages of development have been evident in 

previous research that found that little hands 

unexpectedly activate interactors on mobile 

touchscreen devices [31], and that children have 

difficulty maintaining contact with touchscreens to 

effectively complete drag-and-drop interactions [9]. 

Thus, as touch-based interactions become more 

commonplace, there is a need for additional research 

to understand how the devices can be used by 

individuals of varying physical and cognitive 

developmental levels.  

Foundational Studies 

In our own work, we have employed quantitative and 

qualitative methods to understand the characteristics 

of touch and surface gesture interactions for both 

adults and children. In our previous work [2,8], we 

have presented small studies of adult and child users 

interacting with mobile applications that implement 

the interactions of real-world touch and gesture 

activities such as tapping, sketching, and writing 

[2,8]. Building on these results, we extend our 

previous small-scale studies here to understand 

whether our findings are consistent and robust for 

larger groups of participants. We present findings 

from two studies with adults and children. 

Participants worked with two mobile apps that we 

designed and implemented. Data from Study 1 have 

been previously published [2]. Since Study 2 uses 

nearly the same protocol, we group both datasets 

together for analysis purposes. 

Participants 

We conducted two touch and surface gesture 

interaction studies with a total of 74 participants: 44 

children and 30 adults. Over both studies, the child 

participants ranged in age from 6 to 17 years (mean: 

12.2 yrs, stdev: 2.4 yrs) and all of the adults were 

over the age of 18 (mean: 23.7 yrs, min: 18 yrs, max: 

33 yrs, stdev: 4.0 yrs). Of the 30 adults, 12 were 

female, and of the 44 children, 23 were female. A 

large majority of the participants were right handed 

(61 of 74); 6 considered themselves ambidextrous, 

and 7 were left-handed. 

During the study, participants completed a 

questionnaire to ascertain their familiarity with 

touchscreen devices. Adults tended to self-rate their 

familiarity as “expert” (20 of 30, or 67%) or as 

“average” (10 of 30, or 33%). Children rated 

themselves as “beginners” (2 of 44, or 5%), 

“average” (18 of 44, or 41%), or “expert” (23 of 44, 

or 52%). Table 1 shows the percentage of our 

participants (adults and children) that used and 

owned touchscreen devices. These results reflect the 

rising ubiquity of touchscreen devices such as 

smartphones and tablets.  

 Adults Children 
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e
 Own one 83% 41% 

Use one 

daily 
80% 66% 

T
a
b

le
t Own one 33% 30% 

Use one 

daily 
40% 39% 

M
P

3
 

P
la

y
er

 

Own one 33% 48% 

Use one 

daily 
17% 41% 

T
a
b

le
t 

P
C

 Own one 10% 2% 

Use one 

daily 
7% 7% 

Table 1. Distribution of ownership and usage of 

touchscreen devices for the 74 participants in our 

studies. 

Equipment 

Both experiments were conducted on Samsung 

Google Nexus S smartphones running the Android 

4.0.4 operating system. The phones measured 4.88 x 
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2.48 x 0.43” with a 4” diagonal screen. The display 

resolution was 480 x 800 pixels (233 pixels per inch 

(ppi) pixel density). 

Target Acquisition Task 

The goal of the target acquisition task was to identify 

the touch characteristics of adults and children and 

how they may differ. For details on the study design 

and protocol, see Anthony et al. [2]; for convenience, 

pertinent details are briefly described here.  

The touch task application used 104 targets of four 

different sizes: very small (0.125”), small (0.25”), 

medium (0.375”), and large (0.5”). (Targets were 

designed to display uniformly across devices of 

varying screen resolution.) These sizes were chosen 

based on target sizes in existing applications in order 

to examine the range of acceptable target sizes. 

Targets could appear in any one of 13 pre-defined 

locations (selected using locations in existing apps, 

e.g., along edges, in corners, in the center of screen). 

In both studies, we introduced a variable we call 

edge padding: half of the targets were slightly inset 

from the edge of the screen by a constant “gutter” of 

10 pixels. The other half were aligned with the edge 

of the screen. A total of 104 targets resulted from 

this combination of 4 sizes x 13 locations x 2 edge-

padding conditions, appearing in a set order evenly 

balanced for transitions.  

Participants sat at a table in a user studies lab for 

both studies and were allowed to hold or rest the 

mobile device in a comfortable manner. They were 

instructed to touch each target that appeared 

onscreen. The app scored each touch event as a hit or 

a miss, depending on whether the touch was 

registered within the bounds of the target (this 

scoring was not visible to the participant). On a 

successful hit, the interface advanced to display the 

next target. Figure 1 shows an example of each 

target size; black targets were shown in Study 1, and 

blue targets were shown in Study 2 (blue was chosen 

to increase visual salience of targets when next to 

screen edges). All touch events registered by the 

device were logged and recorded for later data 

analysis, including information such as the x-

coordinate, y-coordinate, time, touch pressure, and 

touch size of each event. 

Gesture Interaction Task 

The goal of the gesture interaction phase was to 

characterize how adults and children create gestures 

and identify differences that may cause recognition 

of these gestures to be challenging. Again, we 

provide a summary of the pertinent details here; for 

more in-depth treatment of our method, see Anthony 

et al. [2]. 

The gesture task application prompted the participant 

to draw a specific gesture. We chose a set of 20 

gestures based on existing apps as well as literature 

from educational psychology [5] to ensure that the 

selected gestures were developmentally appropriate 

for children. After entering the prompted gesture, the 

participant was instructed to touch the onscreen 

“Done” button. Figure 2 shows screenshots of the 

gesture task interface for both Study 1 and Study 2, 

both before and after a gesture has been entered. 

Although we have also explored versions of the app 

in which no visual trace of the gesture path is shown, 

the data presented in this paper used apps that 

showed visual feedback. The complete gesture set 

included letters, numbers, symbols, and geometric 

shapes1 (Figure 3).  

                                                 

1 We did not include command gestures common 

today such as swipe and pinch-to-zoom, based both 

on initial studies finding that these gestures are 

difficult for children [9], and on the prevalence of 

tracing or handwriting practice activities in 

    

 (a) (b) (c) (d) 

Figure 1. Target task interface screens, from Study 1 with black target squares: (a) very small, with edge padding 

and (b) small, flush to the edge of the screen; and from Study 2 with blue target squares: (c) medium, with edge 

padding, and (d) large, flush to the screen edge. In both studies, all four target sizes were represented equally. 
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Figure 3. The set of 20 gestures used in our studies. 

Participants again sat at a table in the lab for both 

studies and were allowed to hold or rest the mobile 

device in a comfortable manner. To help young 

children understand the textual onscreen prompts, in 

Study 1, participants were given a paper sheet 

showing what each gesture should look like. In 

Study 2, we instead asked participants to hand-draw 

each gesture on paper to avoid priming them to 

gesture styles. The app prompted the participant to 

enter one example of each gesture in the set, and 

then repeated the set five times, yielding a total of 

120 gesture samples per participant. All touch events 

were again logged and recorded. All strokes made 

before hitting “Done” were counted as part of one 

gesture and stored together. Aside from certain 

features of the gesture that can be calculated from 

these data (e.g., height, width, duration, etc.), we 

also conducted gesture recognition experiments with 

several recognizers (discussed in detail later in the 

paper) on the gestures collected in both studies. 

                                                                         

children’s education apps today [2]. Future work 

could examine other gestures in more depth. 

Data Analysis Procedures 

We have analyzed data from over 10,000 touches 

and nearly 7,000 gestures to characterize both adults’ 

and children’s patterns. For our analysis, we divide 

the children into four subgroups: 5 to 7 years old 

(yrs), 8 to 10 yrs, 11 to 13 yrs, and 14 to 17 yrs.  

These groups were chosen based on developmental 

psychology literature (e.g., Piaget [34]), our previous 

experience conducting research with children, and 

typical school age groupings in the United States: 

elementary school (5 to 10 yrs), middle school (11 to 

13 yrs), and high school (14 to 17 yrs). Since we 

have only three 5-to-7-year-olds in our Study 

1+Study 2 dataset, for this paper we group them with 

the 8-to-10-year-olds during data analysis. Future 

work will examine the 5-to-7-year-old age group in 

more depth. 

Target Acquisition Findings 

Of the 74 participants across Study 1 and Study 2, 

some users’ log data were excluded due to technical 

difficulties or protocol abnormalities such as not 

finishing the task. A total of 66 participants’ data are 

included in our analysis of the target interaction task 

(37 children, 39 adults). Also, the first target for 

every person was counted as practice and excluded 

from analysis. After removing these and other 

individual abnormal attempts (i.e., task restarts or 

long pauses, less than 0.1% of data), we had just 

under 10,300 total touch events across the 66 

participants. 

Holdovers 

In the touch interaction task, we observed touches 

that were located in the vicinity of the previous 

target, which we have termed holdovers [2]. These 

    

 (a) (b) (c) (d) 

Figure 2. Gesture task interface screens, from Study 1 with a smaller Done button: (a) before drawing the gesture 

and (b) the trace the user sees after drawing the gesture; and from Study 2 with a larger Done button (to prevent 

unintentional touches after finishing the gesture): (c) before drawing the gesture and (d) after drawing the gesture. 

The prompt at the top of the screen tells the participant what gesture to draw.  
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touches occurred because the application advances to 

the next target after a successful touch; holdovers 

occur possibly before the participant is able to notice 

that the interface has changed. Out of the over 

10,000 touch events, 153 were classified as 

holdovers (1.5%). Although this is only a very small 

proportion of all touch events, we believe holdovers 

are a distinct class of unintentional interaction with 

potentially negative consequences (e.g., launching or 

canceling a process, changing a setting, or entering 

or deleting data without the user noticing) that can 

easily be detected and avoided. We classified a touch 

event as a holdover if its (x,y) coordinates were 

within a certain threshold from the previous onscreen 

target. This threshold was set to 117 pixels, the width 

of the largest target size on the study devices. (This 

formula did not suffer from any false positives 

because subsequent target stimuli were always much 

more than 117 pixels apart.) The classifications were 

verified visually by examining images of all touch 

events recorded for each target across the 2 studies 

(in which holdovers are visible clearly, for example, 

see Figure 4). Holdovers occurred on 40 of the 103 

(38.8%) targets. 

Analysis revealed that the holdover phenomenon 

occurred more often in data from children (81.0% of 

all holdovers), and was roughly evenly split between 

the two youngest age groups (35.3% and 38.6% for 7 

to 10 and 11 to 13, respectively), with only 7.2% for 

14 to 17 and 19.0% for adults. A one-way ANOVA 

on per-user frequency of holdovers by age group 

found a significant difference (F3,62=7.28, p<0.01). 

Children ages 7 to 10 (M = 3.93%, SD = 2.88%) had 

higher holdover frequency than children ages 11 to 

13 (M = 1.59%, SD = 2.14%), 14 to 17 (M = 0.69%, 

SD = 0.88%) and adults (M = 0.56%, SD = 1.32%).  

Misses 

Across all data, 78.3% of the targets were 

successfully hit on the first attempt, while 21.7% of 

the targets showed multiple attempts before success 

(mean number of attempts per user per target: M = 

1.53; SD = 1.79). The maximum number of attempts 

for a single target (for a single user) was 37.  

Not counting holdovers, children in general missed 

more targets than adults. A repeated measures 

ANOVA was performed on the per-user target miss 

rate (e.g., proportion of targets missed on the first 

attempt) with a within-subjects factor of target size 

(large, medium, small, very small) and a between-

subjects factor of age group (7 to 10, 11 to 13, 14 to 

17, or adults 18+). Tests of within-subjects effects 

with a Greenhouse-Geisser correction indicate a 

significant interaction between age group and target 

size (F7.4,152.9=2.52, p<0.05). All participants 

experienced the most difficulty with the “very small” 

targets, but the youngest children (7 to 10) 

experienced more difficulty with the next smallest 

target size (“small”) than the other age groups 

(Figure 5). Figure 6 shows examples of touch event 

distribution patterns in the dataset we collected; a 

representative target for each size is drawn within 

the context of the screen size, and all touches that 

were recorded for that target for both children and 

adults (both hits and misses) are shown. The many 

more misses that children clearly make on small 

targetscompared to adults create a challenge for 

determining the intended target, when multiple 

interactive targets are onscreen. 

The edge padding variable also contributed to the 

proportion of misses per target. In the presence of 

edge padding, the target miss rate nearly doubled 

(for both children and adults) compared to no edge 

padding (Figure 7). A repeated measures ANOVA 

was performed on the per-user target miss rate with a 

within-subjects factor of presence of edge padding 

(yes or no) and a between-subjects factor of age 

 

 (a) (b) 

Figure 4. Holdovers in the bottom right corner visible 

after the transition from target (a) to target (b). 

 

Figure 5. Average proportion of misses overall. 

Errors bars indicate the 95% confidence interval. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Very Small (0.125") Small (0.25") Medium (0.375") Large (0.5")

A
ve

ra
ge

 P
ro

po
rt

io
n 

o
f 

M
is

se
s

Target Size (inches)

7 to 10

11 to 13

14 to 17

Adults 18+



7 

group (7 to 10, 11 to 13, 14 to 17, or adults 18+). 

Again, a significant interaction was found between 

age group and edge padding by multivariate tests 

(F3,62=3.93, p<0.05). The youngest children had 

more trouble with edge-padded targets than did older 

children or adults.  

Interestingly, nearly all (99%) misses that occurred 

on edge-padded targets were located within the 

“gutter” (the space between the target and the edge 

of the screen), consistently for all age groups in our 

dataset. This finding contradicts the utility of 

interactive targets that are inset from the screen, as 

seen in some mobile apps, since it is difficult for 

users not to hit that area by mistake. 

Gesture Interaction Findings 

In total we collected 8,880 gesture samples from 74 

people, who each provided 6 samples of 20 gestures. 

For the same reasons noted for the target task above, 

we excluded log data from some participants due to 

technical difficulties and protocol abnormalities. A 

total of 69 participants’ data are included in the 

analysis for the gesture interaction task (39 children, 

30 adults). The first round of gestures for all 

participants was considered practice, leaving 6,900 

gesture samples for our analysis. Some data from 

Study 1 had also been removed from analysis due to 

data collection abnormalities [2], but after a slight re-

design of the gesture app (Figure 2), this issue did 

not occur in Study 2. In total, we include just over 

6,700 gestures in the analysis presented in this paper. 

Recognition Accuracy  

Our past work has shown that children’s gestures are 

significantly less accurately recognized by modern 

recognizers compared to gestures by adults: 81% for 

children on average compared to 90% for adults [2] 

for user-dependent testing, and 34% for children 

compared to 64% for adults for user-independent 

testing [8]2. That testing was done primarily with just 

one recognizer, the $N-Protractor recognizer [3], 

which is an open-source, trainable recognizer 

currently used by gesture interaction researchers and 

mobile app developers. We are interested in whether 

other recognizer types might actually perform better 

than $N-Protractor for children, since $N-Protractor 

tends to work best with more consistent input [3]. As 

                                                 

2 User-dependent testing refers to recognition testing 

in which the recognizer is trained on samples of the 

same person’s writing on which it is to be tested. 

User-independent testing refers to training and 

testing on samples only from different users. 

 

Figure 7. Average proportion of misses for edge 

padded targets only. Errors bars indicate the 95% 

confidence interval. 
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 (a) (b) (c) (d) 

Figure 6. Examples of the distribution of touch events for adults (blue triangles) and for children (red squares) for targets in 

our studies: (a) large, (b) medium, (c), small, and (d) very small. 
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our prior work showed, children are much less 

consistent than are adults in how they make gestures 

[8]; for example, they tend to use more strokes and 

make larger gestures. Therefore, recognizers that are 

more robust to number of strokes and other 

execution details may be more successful for 

children’s gestures. $P [45], another open-source and 

trainable recognizer, is a recent advance over $N-

Protractor in terms of robustness to gesture execution 

styles, and we hypothesized it may do better on 

children’s gestures.  

For this paper, we tested our corpus of gestures with 

both $N-Protractor and $P, as well as the  industry 

standard Microsoft Tablet PC recognizer (non-

trainable) for comparison’s sake3. We compared 

children to adults based on the same four age groups 

we have been using throughout this paper. To get a 

fuller picture of expected recognition accuracy first 

out of the box, and then after learning a particular 

child’s gesture patterns over time, we compare both 

user-independent (out-of-the-box accuracy, for $P 

and Microsoft Tablet PC recognizer) and user-

dependent (per-child accuracy, for $N-Protractor and 

$P) recognition accuracy.  

Figure 8 shows a graph of the recognition accuracy 

means by age group and recognizer. The best out-of-

the-box performer is $P: accuracy ranges from 

nearly 84% for adults, to about 70% for the youngest 

children in our study (7 to 10). Prior work [28] has 

                                                 

3 Note that the Tablet PC recognizer is only suited 

for handwriting gestures, so we removed arch, 

arrowhead, checkmark, diamond, heart, rectangle 

and triangle from the results; circle, line and plus 

have keyboard symbol equivalents and were kept, 

along with all the numbers and letters in the corpus. 

indicated that adults will tolerate recognition 

accuracy only as low as 97%, whereas child-specific 

studies [37] found children more tolerant, accepting 

about 91% accuracy. Thus, the user-independent 

configuration of $P is not accurate enough for good 

out-of-the-box performance for new children using a 

gesture-based interactive system. The per-child 

recognition accuracy of the user-dependent 

configuration of $P is the best performer overall, 

reaching nearly 97% for adults and 96% for 

teenagers, but still performs quite low, around 84%, 

for young children. These findings point to a need 

for tailored age-specific gesture recognition for 

children that can be more accurate on the types of 

gestures expected from them.  

A repeated-measures ANOVA was performed on 

per-user average gesture recognition accuracy with a 

within-subjects factor of recognizer (Microsoft 

Tablet PC, $N-Protractor, and $P) and a between-

subjects factor of age group (7 to 10, 11 to 13, 14 to 

17, and adults), with a Greenhouse-Geisser 

correction. No significant interaction was found 

between recognizer and age group (F4.98,107.8=1.56, 

n.s.), but there is a significant main effect of both 

age group (F3,65=13.75, p<0.01) and recognizer 

(F1.66,107.8=1168.7, p<0.01). As mentioned, 

recognition accuracy was highest with $P, but lowest 

overall for young children ages 7 to 10 (Table 2). 

These findings indicate that the more robust 

recognition approach of $P is in fact more suited to 

children’s gestures than the other recognizers. Still, 

children’s gestures are less well recognized than 

adults’ even by $P, according to a one-way ANOVA 

on age group for just the $P user-independent 

recognition results (F3,20=3.42, p<0.05).  

As in our prior work [2], we hypothesized that there 

might be a direct relationship between recognition 

accuracy and a child’s age, that is, we expected that 

accuracy on children’s gestures would be lower for 

younger children. Indeed, there was a strong positive 

 

7 to 10 11 to 13 14 to 17 

Adults 

18+ 

User-

Indep. 

TabletPC 

M 42.7% 46.2% 49.1% 50.7% 

SD 9.1% 6.4% 6.7% 5.4% 

N 7 22 10 30 

User-

Indep. 

$P 

M 69.6% 78.2% 78.0% 83.7% 

SD 8.3% 7.6% 7.7% 7.2% 

N 6 6 6 6 

User-Dep. 

$N-Prot. 

M 75.7% 82.4% 86.4% 90.4% 

SD 10.3% 6.5% 6.8% 6.1% 

N 7 22 10 30 

User-Dep. 

$P  

M 83.7% 92.2% 95.7% 96.6% 

SD 8.7% 6.3% 2.4% 5.0% 

N 7 22 10 30 

Table 2. Descriptive statistics for the four recognizers 

tested by age group. Recognition accuracy was highest 

with $P, but lowest overall for children ages 7 to 10. 

 

Figure 8. Recognition performance by age group for 

each of the four recognizer configurations tested. Error 

bars indicate the 95% confidence interval. User-

dependent $P is the best performer but still performs 

quite low, around 84%, for young children.  
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correlation between age (in years) and average 

recognition accuracy by $P for children in our 

dataset (r=.60, p<0.01, N=39). Because of this 

correlation, we expect accuracy for gestures made by 

children even younger than those in our studies to 

continue to deteriorate. Future work must investigate 

recognition approaches that can be tailored to the 

types of gestures we expect children of all ages to 

generate.  

Implications for Design 

This work, based on data from two studies with 

nearly 70 adults and children so far, has indicated 

that there are reliable differences in how children 

and adults use touchscreens that impact successful 

touchscreen interaction. Many of the technical 

challenges we have identified in previous reports on 

these and similar studies [2,8] involve understanding 

and interpreting the user’s intended target or gesture, 

especially for children. We review these 

implications, as well as new ideas for future work 

based on these cumulative findings. 

Prevent Unintended Touch 
Interactions 

Many of our recommendations center on challenges 

of understanding and interpreting what the user 

intended to do in ambiguous interaction modalities 

such as touch and gesture. These challenges are even 

more impactful for children than for adults, given the 

range of inconsistent input children tend to generate 

according to our studies. Systems that have been 

programmed or trained to expect certain patterns of 

input will find it difficult to handle children’s input, 

which may not have been predicted at design time. 

In our prior work on Study 1 alone [2], we identified 

several design recommendations that could be 

incorporated into such systems to allow them to 

better adapt to children’s input. We reiterate them 

here succinctly for reference, and add to them. Table 

3 summarizes them for quick and easy reference. 

Use timing and location of touches and interface 

widgets to identify and ignore holdover touches 

(corollary: improve interface responsiveness to 

prevent holdovers). Our extended dataset shows the 

holdover effect is robust, occurring in the same 

patterns as for our previous report on Study 1: 

mostly the youngest children, mostly the smallest 

targets. As we mentioned, although holdovers are a 

small subset of the overall touch event data we 

collected (1.5%), their consequences are potentially 

severe. Holdovers can be easy to prevent using a 

simple heuristic that ignores any touches registered 

in the same place as the previously-activated widget 

within a short time threshold. 

Use consistent, platform-recommended target 

sizes. Our extended dataset supports our initial 

finding from Study 1 that the “very small” targets, 

0.125” square, presented the greatest challenge for 

both children and adults: approximately half were 

missed on the first try, more than double the miss 

rate for the other sizes. In the extended dataset 

presented in this paper, we see that the youngest 

children (ages 7 to 10) miss an average of 30% of the 

“small” (0.25”) targets as well. This finding 

contradicts our original hypothesis that children’s 

smaller fingers might enable them to use smaller 

touch targets. Rather, our data indicate that, the 

younger the child, the larger the targets are actually 

necessary to be. 

Increase active area for interface widgets to allow 

slightly out-of-bounds touches to register and 

activate the intended widget. In our data, missed 

touches tend to be close to the intended target—not 

many touches are registered in other areas of the 

screen. When more than one target is onscreen at 

once, an intelligent interaction layer could 

probabilistically determine which interactive widget 

Interaction Strategy Design Implication 

Touch and 

Pointing 

Prevent 

unintended 

touch 

interactions 

Use timing and location of touches and interface widgets to identify and 

ignore holdover touches (corollary: improve interface responsiveness to 

prevent holdovers). 

Use consistent, platform-recommended target sizes. 

Increase active area for interface widgets to allow slightly out-of-bounds 

touches to register and activate the intended widget. 

Align targets to edge of screen, or count edge touches. 

Gesture  

Tailor gesture 

recognition for 

children 

Train age-specific recognizers to improve accuracy on children’s 

gestures. 

Design gestures and gesture sets that make conceptual sense to children 

and are easy for them to execute. 

Develop child-specific recognizers from the ground up. 

Allow recognizers to learn over time and adapt to an individual child’s 

gestures. 

Table 3. Design recommendations for touch and gesture interaction on mobile devices that we suggest based on 

our studies with children and adults. 
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was intended based on the location of the touch 

event compared to the visual boundary of the widget 

(e.g., [13,15]). This will increase the number of 

successful interactions a child will have while using 

the device. 

Align targets to edge of screen, or count edge 

touches. The proportion of missed touches which 

occur in the “gutter” between the target and the edge 

of the screen (99% of touches for all age groups) 

remained consistent from Study 1 to the extended 

dataset in Study 2. We note that, if targets cannot be 

aligned to the screen edge for some reason (the ideal 

solution), touches registered in the “gutter” should 

activate the nearest interactive widget using similar 

probabilistic reasoning as suggested in the previous 

recommendation. 

Tailor Gesture Recognition for 
Children 

Understanding what gesture a user meant to input is 

the main challenge for gesture interaction. Based on 

our dataset of gestures made by children and adults 

froma wide range of age groups, consistency in 

gesture execution patterns among different users is 

not guaranteed, impacting gesture recognition 

accuracy. Therefore, we focus our design 

recommendations for gesture interaction on the 

recognition itself. Those recommendations that were 

initially proposed in our prior work on Study 1 alone 

[2] are reiterated here succinctly for reference, and 

new ones are added. 

Train age-specific recognizers to improve 

accuracy on children’s gestures. Our extended 

dataset confirms our finding from Study 1 that 

children’s gestures are more difficult than adults’ to 

recognize and interpret, even by very different 

recognizers. Furthermore, recognizers have the most 

trouble with the youngest children’s gestures: 

recognition accuracy was strongly positively 

correlated with age. For best out-of-the-box 

performance for new children using a device, we 

recommend training specific recognizer models per 

age (e.g., a “7-year-old” recognizer, a “10-year-old” 

recognizer, etc.). 

Design gestures and gesture sets that make 

conceptual sense to children and are easy for 

them to execute. Since prior work has indicated that 

children have trouble executing drag-and-drop 

gestures [9], we recommend exploring other 

interactive gestures that may be more suited to the 

cognitive and physical development of children. 

Development psychology literature [5] has 

established clear guidelines about the types of 

gestures and shapes children can be expected to 

execute smoothly based on their age. Therefore, we 

have explored mostly shape-based gestures in our 

studies, and find that typically the children 

participating do understand these gestures and are 

able to make them. We recommend using similar 

gesture types for all interaction, rather than relying 

on complex abstract gestures such as drag-and-drop 

or pinch-to-zoom. 

Develop child-specific recognizers from the 

ground up. Our earlier work has found significant 

differences in the ways children and adults execute 

gestures; for example, children make taller gestures 

with more strokes [8]. In this extended dataset of 

Study 1 and 2, we did not find further support for 

such differences. However, $P [45] was the most 

successful recognizer we tested on our dataset, partly 

because its recognition approach is more robust to 

execution differences. Still, recognition accuracy 

continues to be lower for children, pointing to as-yet-

unknown ways in which children’s gestures differ 

from adults. Beyond simply training existing 

recognizers to samples of children’s input, we also 

suggest the development of new recognition 

approaches developed from the ground up with 

children’s input in mind. 

Allow recognizers to learn over time and adapt to 

an individual child’s gestures. User-dependent 

recognition, in which the recognizer is trained on 

samples of the same user’s data on which it is being 

tested, was the most accurate configuration on the 

extended dataset in this paper, supporting similar 

comparisons in our prior work [2,8]. At first, all 

users are first-time, “out-of-the-box” users (user-

independent). With every new gesture seen, 

however, the recognizer can update its model to 

become more user-dependent over time, increasing 

accuracy by adapting to an individual child. Of 

course, accuracy in this configuration is still quite 

low for the youngest children in our data (less than 

84%). Therefore, it is likely that a combination of 

this approach along with child-specific recognition 

algorithms will be required for accurate, successful 

gesture interaction for children. 

Extensions of This Work 

This paper presents a set of design recommendations 

for touch and gesture interaction for children that is 

based on findings proven to be robust over two 

studies with nearly 70 adults and children of various 

ages. We are currently moving this work forward in 

three key ways: (a) working with even younger 

children, (b) exploring larger-screen devices, and (c) 

investigating educational contexts. We briefly 

describe our initial explorations into these areas and 

how they may lead to more specific design 

recommendations, and educational applications. 
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Working with Younger Children 

In the studies presented in this paper, the children 

who participated were six years old and older. We 

are currently investigating whether children ages 5 

through 7 exhibit similar patterns of input behavior 

as the older participants in our studies. We have 

conducted a small pilot study with 5 to 7 year olds, 

using the same two tasks in this paper. From this 

pilot, we have identified potential challenges for 

collecting controlled laboratory data from children of 

this age group [7]. In the gesture task, we observed 

these young children having difficulty completing 

the entire gesture set. They often appeared bored or 

fidgety, and several children requested to end the 

session early. In the target task, we noticed that 

young children often had to repeatedly touch the 

targets and/or modify how they were holding the 

phone. During the pilot, only one child completed all 

of the gesture and target tasks. 

Based on our observations in this pilot study, we 

have been exploring modifications to address the low 

task completion rates. These modifications include 

giving points for completing portions of the tasks 

which children can redeem at the end of the session 

for rewards, for example, small items like candy, 

toys, or games. The points are nothing more than a 

progress-meter, but we hope the points (and rewards) 

will encourage children to complete the entire 

session. This would allow us to compare these young 

children with our existing data. We anticipate such 

motivating details will apply equally well to older 

children and to adults, maintaining comparability 

across new studies we will run. 

Exploring Larger-Screen Devices 

The work presented in this paper focuses on 

smartphones, which are only one type of touchscreen 

device platform available today. Smartboards, 

tabletops, and tablet devices also support touch 

input, but on larger screens. While we anticipate that 

similar findings will hold for larger device sizes, the 

studies we have so far conducted cannot definitively 

answer that question. We plan to explore tablet 

devices in the near future, as the next most common 

device being used today by children and teens, and 

then move toward even large form-factors such as 

smartboards and tabletops. In the end, we will have 

validated empirical evidence across a variety of 

touchscreen device form factors that can be used to 

design tailored interactive apps for children. 

Investigating Educational Contexts 

In our foundational studies thus far, we have been 

exploring interaction with abstract tasks, focusing on 

the basic atomic input events we might expect to see 

from children and adults, irrespective of the task at 

hand. We hypothesize that, as the user’s goal shifts 

in different contexts, input behaviors may also shift. 

Therefore, we are next planning to explore whether 

the same input patterns occur in a game-like app, in 

preparation for moving to more complex 

environments such as intelligent tutors. If we 

determine that similar patterns are observed, general 

design recommendations can apply across contexts. 

If they do not hold, context-specific interaction 

paradigms may be necessary. We believe studying 

the differences between contextualized and abstract 

apps can transfer to all age groups. 

We have already begun design and development of 

in-context apps that are modeled after our abstract 

task applications, but add elements of game-like 

activity to change the user’s focus during the task. 

As an example, the new target task application, 

‘Patty the Penguin’, uses the same targets as the 

original target app. However, instead of a white 

background, a penguin occupies the center of the 

screen and, instead of blue squares, small fish 

appear. Participants have to help Patty Penguin eat 

by touching the fish to capture them for her. We 

might expect to see different patterns of touch events 

for such a context. For example, perhaps children 

will miss even more often or experience more 

holdovers as they become engrossed in the metaphor 

of the game. Designing different interactive layers 

for different contexts may be required. We anticipate  

exploring educational applications as well, once the 

basic contextual factors are understood. 

Conclusion 

This paper has presented our investigations into 

mobile touch and gesture interaction for children and 

how children might differ from adults. In data from 

two studies with nearly 70 users, we have found 

robust evidence that children have more trouble 

successfully acquiring onscreen targets and having 

their gestures recognized than do adults, especially 

the youngest age group (7 to 10 years old). We also 

have examined the holdover phenomenon, which 

children exhibit far more often than do adults. In 

next-generation classrooms and educational 

environments, mobile touchscreen devices will 

enable new means of motivating and engaging 

students in active learning. Based on our findings, 

we identify key design and implementation 

challenges of supporting children’s touch and 

gesture interactions, and we suggest ways to address 

them. The contributions of this work will assist 

designers and developers who are creating 

interactive educational apps for surface computing 

platforms, aiming to decrease student distraction due 

to failed interactions and increase student success. 
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